Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2270278

ABSTRACT

One strategy in caries prevention is to inhibit the formation of cariogenic biofilms. Attempts are being made to develop oral hygiene products enriched with various antimicrobial agents. One of them is lactoperoxidase-an enzyme that can oxidise (pseudo)halide ions to reactive products with antimicrobial activity. Currently, commercially available products utilise thiocyanate as a substrate; however, several alternatives that are oxidised to products with greater antimicrobial potential have been found. In this study, toxicity against human gingival fibroblasts of the lactoperoxidase system was evaluated using four different (pseudo)halide substrate systems-thiocyanate, iodide, selenocyanate, and a mixture of thiocyanate and iodide. For this purpose, cells were treated with the systems and then apoptosis, cell cycle, intracellular glutathione concentration, and mitochondrial superoxide production were assessed. The results showed that each system, after generating 250 µM of the product, inhibited cell divisions, increased apoptosis, and increased the percentage of dead cells. It was concluded that the mechanism of the observed phenomena was not related to increased superoxide production or the depletion of glutathione concentration. These findings emphasised the need for the further in vitro and in vivo toxicity investigation of the modified lactoperoxidase system to assess its safety and the possibility of use in oral hygiene products.


Subject(s)
Lactoperoxidase , Thiocyanates , Humans , Fibroblasts/metabolism , Hydrogen Peroxide/pharmacology , Iodides/metabolism , Lactoperoxidase/metabolism , Superoxides , Thiocyanates/pharmacology , Gingiva/metabolism
2.
Front Public Health ; 10: 829466, 2022.
Article in English | MEDLINE | ID: covidwho-1776030

ABSTRACT

Aim: To examine the human exposure to perchlorate, nitrate, and thiocyanate, and their associations with oral pain (OP) in the general population from the U.S. Methods: A total of 13,554 participants were enrolled in the National Health and Nutrition Examination Survey. The urinary perchlorate, nitrate, and thiocyanate were measured using ion chromatography coupled with an electrospray tandem mass spectrometry. The multivariable linear and logistic regressions were performed to explore the associations of the urinary perchlorate, nitrate, and thiocyanate, with the prevalence of oral pain. Restricted cubic splines were used to explore the non-linearity. Results: There are 3,129 OP cases. There was a higher urinary level of perchlorate, nitrate, and thiocyanate in OP. We found that urinary thiocyanate was positively associated with OP (odds ratio [OR] = 1.06; [1, 1.13]; p = 0.049). Restricted cubic spines revealed that urinary thiocyanate was in a U-shape association with OP. Conclusions: Urinary thiocyanate was in a U-shape association with OP, suggesting that we should keep the exposure of thiocyanate under a reasonable range.


Subject(s)
Mouth , Nitrates , Pain , Perchlorates , Thiocyanates , Environmental Exposure/adverse effects , Humans , Mouth/physiopathology , Nitrates/urine , Nutrition Surveys , Pain/epidemiology , Perchlorates/urine , Thiocyanates/urine , United States/epidemiology
3.
Med Microbiol Immunol ; 210(4): 235-244, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1292088

ABSTRACT

The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. Laboratory work with SARS-CoV-2 in a laboratory setting was rated to biosafety level 3 (BSL-3) biocontainment level. However, certain research applications in particular in molecular biology require incomplete denaturation of the proteins, which might cause safety issues handling contaminated samples. In this study, we evaluated lysis buffers that are commonly used in molecular biological laboratories for their ability to inactivate SARS-CoV-2. In addition, viral stability in cell culture media at 4 °C and on display glass and plastic surfaces used in laboratory environment was analyzed. Furthermore, we evaluated chemical and non-chemical inactivation methods including heat inactivation, UV-C light, addition of ethanol, acetone-methanol, and PFA, which might be used as a subsequent inactivation step in the case of insufficient inactivation. We infected susceptible Caco-2 and Vero cells with pre-treated SARS-CoV-2 and determined the tissue culture infection dose 50 (TCID50) using crystal violet staining and microscopy. In addition, lysates of infected cells and virus containing supernatant were subjected to RT-qPCR analysis. We have found that guanidine thiocyanate and most of the tested detergent containing lysis buffers were effective in inactivation of SARS-CoV-2, however, the M-PER lysis buffer containing a proprietary detergent failed to inactivate the virus. In conclusion, careful evaluation of the used inactivation methods is required especially for non-denaturing buffers. Additional inactivation steps might be necessary before removal of lysed viral samples from BSL-3.


Subject(s)
Anti-Infective Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Thiocyanates/pharmacology , Virus Inactivation , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Containment of Biohazards , Humans , RNA, Viral , Real-Time Polymerase Chain Reaction , SARS-CoV-2/physiology , Specimen Handling/methods , Time Factors , Vero Cells
4.
Sci Total Environ ; 756: 143067, 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-867105

ABSTRACT

The primary concentration and molecular process are critical to implement wastewater-based epidemiology for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the previously developed methods were optimized for nonenveloped viruses. Few studies evaluated if the methods are applicable to the efficient recovery of enveloped viruses from various types of raw sewage. This study aims (1) to compare the whole process recovery of Pseudomonas phage φ6, a surrogate for enveloped viruses, among combinations of primary concentration [ultrafiltration (UF), electronegative membrane vortex (EMV), and polyethylene glycol precipitation (PEG)] and RNA extraction methods (spin column-based method using QIAamp Viral RNA Mini Kit and acid guanidinium thiocyanate-phenol-chloroform extraction using TRIzol reagent) for three types of raw sewage and (2) to test the applicability of the method providing the highest φ6 recovery to the detection of SARS-CoV-2 RNA. Among the tested combinations, PEG+TRIzol provided the highest φ6 recovery ratio of 29.8% to 49.8% (geometric mean). UF + QIAamp Viral RNA Mini Kit provided the second highest φ6 recovery of 6.4% to 35.8%. The comparable φ6 recovery was observed for UF + TRIzol (13.8-30.0%). PEG + QIAamp Viral RNA Mini Kit provided only 1.4% to 3.0% of φ6 recovery, while coliphage MS2, a surrogate for nonenveloped viruses, was recovered comparably with PEG + TRIzol. This indicated that the nonenveloped surrogate (MS2) did not necessarily validate the efficient recovery for enveloped viruses. EMV + QIAamp Viral RNA Mini Kit provided significantly different φ6 recovery (1.6-21%) among the types of raw sewage. Then, the applicability of modified PEG + TRIzol was examined for the raw sewage collected in Tokyo, Japan. Of the 12 grab samples, 4 were positive for SARS-CoV-2 CDC N1 and N3 assay. Consequently, PEG + TRIzol provided the highest φ6 recovery and allowed for the detection of SARS-CoV-2 RNA from raw sewage.


Subject(s)
COVID-19 , Wastewater , Chloroform , Guanidines , Humans , Japan , Phenol , Phenols , Polyethylene Glycols , SARS-CoV-2 , Thiocyanates , Tokyo
5.
Ann Lab Med ; 40(6): 439-447, 2020 11.
Article in English | MEDLINE | ID: covidwho-599917

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early detection of COVID-19 and immediate isolation of infected patients from the naive population are important to prevent further pandemic spread of the infection. Real-time reverse transcription (RT)-PCR to detect SARS-CoV-2 RNA is currently the most reliable diagnostic method for confirming COVID-19 worldwide. Guidelines for clinical laboratories on the COVID-19 diagnosis have been recently published by Korean Society for Laboratory Medicine and the Korea Centers for Disease Control and Prevention. However, these formal guidelines do not address common practical laboratory issues related to COVID-19 real-time RT-PCR testing and their solutions. Therefore, this guideline is intended as a practical and technical supplement to the "Guidelines for Laboratory Diagnosis of COVID-19 in Korea".


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Guanidines/chemistry , Guidelines as Topic , Humans , Nasopharynx/virology , Nucleocapsid Proteins/genetics , Open Reading Frames/genetics , Oropharynx/virology , Pandemics , Phosphoproteins , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Republic of Korea , SARS-CoV-2 , Thiocyanates/chemistry , Viral Envelope Proteins/genetics , Viroporin Proteins
SELECTION OF CITATIONS
SEARCH DETAIL